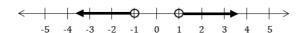
Learning Goal Check!



1. Consider each of the following. Graph the relation on a number line.

$$|x| \ge 3$$

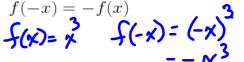
2. From the graph, state the relation.

3. Graph the following and state the domain and range.

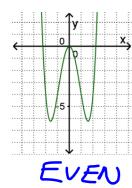
$$f(x) = |x+2| - 1$$

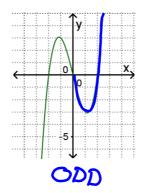
1.03 - Properties of Graphs and Functions

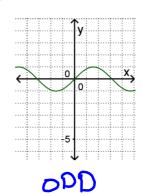
Learning Goals:


- I can determine the important properties of functions from their equations.
- I can compare properties between parent functions, and within a parent function's family.
- I can prove algebraically and graphically that a function is even, odd or neither.

An **even** function is symmetrical on the *y*-axis.


Algebraically, all even functions have the property f(-x) = f(x)


An odd function has rotational symmetry about the origin, or is symmetrical through the origin.


Algebraically, all odd functions have the property f(-x) = -f(x)

Ex. 1 Determine if each function is even, odd, or neither.

$$f(x) = x^{3}$$

$$f(-x) = (-x)^{3}$$

$$= -x^{3}$$

$$= -f(x)$$

$$\therefore ODD$$

$$f(x) = x^{2}$$

$$f(x) = (-x)^{2}$$

$$= x^{2}$$

$$= f(x)$$

$$\therefore \exists \forall x \in \mathbb{Z}$$

$$f(x) = x^{2}$$

$$f(x) = x^{3} + x^{2}$$

$$f(-x) = (-x)^{3} + (-x)^{2}$$

$$= x^{2}$$

$$= f(x)$$

$$f(x) = x^{3} + x^{2}$$

$$= (-x)^{3} + (-x)^{2}$$

$$= (-x)^{3} + (-x)^{2}$$

$$= (-x)^{3} + (-x)^{2}$$

$$= (-x)^{3} + (-x)^{2}$$

$$f(x) = x^5 - x^3$$

$$f(-x) = (-x)^{5} - (-x)^{3}$$

$$= -x^{5} - (-x^{3})$$

$$= -(x^{5} - x^{3})$$

$$= -(x^{5} - x^{3})$$

$$= -(x^{5} - x^{3})$$

$$f(x) = x^{4} + 2x^{3}$$

$$f(-x) = (-x)^{4} + 2(x)^{3}$$

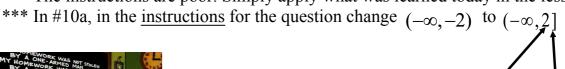
$$= x^{4} - 2x^{3}$$

$$= -(-x^{4} + 2x^{3})$$
NEITHER

A <u>transformation</u> is a geometric operation, such as a translation, reflection and compression.

Each transformation is performed on a parent relation. There are many parent relations. A **parent function** belongs to the set of parent relations and is the simplest function in a family of functions. For example, the family of quadratic functions are all constructed from $y = x^2$.

Ex. 2 Complete the table of properties for each of the following functions.


Function	f(x) = x	f(x) = x	$f(x) = x^2$	$f(x) = \frac{1}{x}$	$f(x) = \sqrt{x}$	$f(x) = 2^x$	$f(x) = \sin(x)$
Domain	xeR	xeR	KER	XER XJO	XZO	x < R	XER
Range	yeR	y≥0	y20	R O	y20	4>0	-15971
Zeroes	X= 0	X=0	X=0	NONE	X-0	NONE	90'n
<i>y</i> -int	y-int=0	y . int = 0	y-int-0	NONE	¥=0	y=1	0
Interval of increase	xeR	x>0	%>0	NONE	%>0	xeR	
Interval of decrease	N/A	X<0	%<0	xer x≠0	N/A	N/A	
Even or Odd	ODD	EVEN	EVEN	ODD	NEITHER	NETHER	OPD
VA	N/A	2/9	N/A	% =0	NA	N/A	NIA
НА	N/4	N/A	N/A	y -0	NA	y=0	N/A
As $x \to \infty$	y > 00	y→ ∞	y+00	y > 0	y	y-xxx	
As $x \to -\infty$	y00	y>> 00	y→∞	y-0	N/A	y-0	

Practice:

Do: pg. 23 #3*, 4ad, 5**, 6, 7, 8, 10***, 15

* Error in answer: the function can be derived from any y=bx, for any valid "b"),

** The instructions are poor. Simply apply what was learned today in the lesson.

